Search results for " perturbation"

showing 10 items of 429 documents

Low-energy interactions of Nambu-Goldstone bosons with D mesons in covariant chiral perturbation theory

2010

We calculate the scattering lengths of Nambu-Goldstone bosons interacting with D mesons in a covariant formulation of chiral perturbation theory, which satisfies heavy-quark spin symmetry and analytical properties of loop amplitudes. We compare our results with previous studies performed using heavy-meson chiral perturbation theory and show that recoil corrections are sizable in most cases.

PhysicsQuarkNuclear and High Energy PhysicsParticle physicsChiral perturbation theoryHigh Energy Physics::LatticeNuclear TheoryHigh Energy Physics::PhenomenologyFOS: Physical sciencesElementary particleRenormalizationHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Goldstone bosonHigh Energy Physics::ExperimentPerturbation theoryChiral symmetry breakingNuclear ExperimentBoson
researchProduct

Resonances, chiral symmetry, coupled channel unitarity and effective Lagrangians

1999

By means of a coupled channel non-perturbative unitary approach, it is possible to extend the strong constrains of Chiral Perturbation Theory to higher energies. In particular, it is possible to reproduce the lowest lying resonances in meson-meson scattering up to 1.2 GeV using the parameters of the O(p^2) and O(p^4) Chiral Lagrangian. We report on an update of these results examining their possible relevance for meson spectroscopy.

PhysicsNuclear and High Energy PhysicsChiral symmetryParticle physicsChiral perturbation theoryFísica-Modelos matemáticosNuclear TheoryUnitarityMesonScatteringHigh Energy Physics::LatticeNuclear TheoryHigh Energy Physics::PhenomenologyFOS: Physical sciencesFísicaUnitary stateNuclear Theory (nucl-th)High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Física matemáticaHigh Energy Physics::ExperimentSpectroscopyNuclear ExperimentCommunication channel
researchProduct

Computational determination of the dominant triplet population mechanism in photoexcited benzophenone

2014

In benzophenone, intersystem crossing occurs efficiently between the S-1(n pi(star)) state and the T-1 state of dominant n pi(star) character, leading to excited triplet states after photoexcitation. The transition mechanism between S-1(n pi(star)) and T-1 is still a matter of debate, despite several experimental studies. Quantum mechanical calculations have been performed in order to assess the relative efficiencies of previously proposed mechanisms, in particular, the direct S-1 -> T-1 and indirect S-1 -> T-2(pi pi(star)) -> T-1 ones. Multiconfigurational wave function based methods are used to discuss the nature of the relevant states and also to determine minimum energy paths a…

STATE DIPOLE-MOMENTSPopulationMechanistic organic photochemistryEXCITED BENZOPHENONEGeneral Physics and AstronomyGAS-PHASEABSORPTION-SPECTROSCOPYchemistry.chemical_compoundORGANIC-PHOTOCHEMISTRYMOLECULAR WAVE-FUNCTIONSBenzophenonePhysical and Theoretical ChemistryeducationWave functioneducation.field_of_studyROW ATOMSChemistryCONICAL INTERSECTIONSPhotoexcitation[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistryIntersystem crossingExcited state2ND-ORDER PERTURBATION-THEORYANO BASIS-SETSAtomic physicsPhosphorescence
researchProduct

K− over K+ multiplicity ratio for kaons produced in DIS with a large fraction of the virtual-photon energy

2018

The K$^{-}$ over K$^{+}$ multiplicity ratio is measured in deep-inelastic scattering, for the first time for kaons carrying a large fraction $z$ of the virtual-photon energy. The data were obtained by the COMPASS collaboration using a 160 GeV muon beam and an isoscalar $^6$LiD target. The regime of deep-inelastic scattering is ensured by requiring $Q^2>1$ (GeV/$c)^2$ for the photon virtuality and $W>5$ GeV/$c^2$ for the invariant mass of the produced hadronic system. Kaons are identified in the momentum range from 12 GeV/$c$ to 40 GeV/$c$, thereby restricting the range in Bjorken-$x$ to $0.010.75$. For very large values of $z$, $i.e.$ $z>0.8$, we observe the kaon multiplicity ratio to fall …

Hadron0 [higher-order]target: isoscalar01 natural sciencesCOMPASSdeep inelastic scattering [muon+ nucleon]High Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)K: multiplicityHigh Energy Physics - Phenomenology (hep-ph)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]isoscalar [target]Invariant massNuclear ExperimentBosonPhysicsQuantum chromodynamicsquark: fragmentation functionhigher-order: 0photonperturbation theory: higher-orderhep-phмюоныlcsh:QC1-999Bjorken [scaling]High Energy Physics - Phenomenologybeam [muon]рассеяниеfactorization [cross section]multiplicity [pi]Particle Physics - Experimentperturbation theory [quantum chromodynamics]Particle physicsNuclear and High Energy PhysicsMesonFOS: Physical sciencesratio [multiplicity]530fragmentation function [quark]x-dependencescaling: Bjorkencharged particle: multiplicityphase spacemultiplicity [charged particle][ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]виртуальные фотоны0103 physical sciencesddc:530universalityquantum chromodynamics: perturbation theory010306 general physicsParticle Physics - Phenomenologymuon+ nucleon: deep inelastic scatteringMuonmultiplicity: ratiopi: multiplicity010308 nuclear & particles physicshep-exmuon: beamMultiplicity (mathematics)cross section: factorizationCERN SPSDeep inelastic scatteringhigher-order [perturbation theory][PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]каоны[ PHYS.HPHE ] Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::Experimentmultiplicity [K]hadronizationlcsh:Physicsexperimental resultsPhysics Letters B
researchProduct

Updated determination of chiral couplings and vacuum condensates from hadronic tau decay data

2016

We analyze the lowest spectral moments of the left-right two-point correlation function, using all known short-distance constraints and the recently updated ALEPH V-A spectral function from tau decays. This information is used to determine the low-energy couplings L10 and C87 of chiral perturbation theory and the lowest-dimensional contributions to the Operator Product Expansion of the left-right correlator. A detailed statistical analysis is implemented to assess the theoretical uncertainties, including violations of quark-hadron duality.

PhysicsAlephParticle physicsChiral perturbation theory010308 nuclear & particles physicsHadronDuality (optimization)FOS: Physical sciencesCorrelation function (quantum field theory)01 natural sciences3. Good healthHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]0103 physical sciencesStatistical analysisHigh Energy Physics::ExperimentOperator product expansionSpectral function010306 general physics
researchProduct

Bethe-Salpeter Approach for Meson-Meson Scattering in Chiral Perturbation Theory

1998

The Bethe-Salpeter equation restores exact elastic unitarity in the s- channel by summing up an infinite set of chiral loops. We use this equation to show how a chiral expansion can be undertaken by successive approximations to the potential which should be iterated. Renormalizability of the amplitudes in a broad sense can be achieved by allowing for an infinite set of counter-terms as it is the case in ordinary Chiral Perturbation Theory. Within this framework we calculate the $\pi \pi$ scattering amplitudes both for s- and p-waves at lowest order in the proposed expansion where a successful description of the low-lying resonances ($\sigma$ and $\rho$) and threshold parameters is obtained.…

PhysicsNuclear and High Energy PhysicsInfinite setChiral perturbation theoryMesonUnitarityNuclear TheoryScatteringHigh Energy Physics::PhenomenologyOrder (ring theory)FísicaFOS: Physical sciencesScattering amplitudeNuclear Theory (nucl-th)High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Iterated functionMathematical physics
researchProduct

Follow-up on non-leptonic Kaon decays at large $N_c$

2018

We report on the status of our dynamical simulations of a $SU (N_c )$ gauge theory with $N_c=3-6$ and $N_f =4$ fundamental fermions. These ensembles can be used to study the Large $N_c$ scaling of weak matrix elements in the GIM limit $m_c=m_u$, that might shed some light on the origin of the $\Delta I=1/2$ rule. We present preliminary results for the $K \to \pi$ matrix elements in the $N_c=3$ dynamical simulations, where we observe a significant effect of the quark loops that goes in the direction of enhancing the ratio of $A_0/A_2$ amplitudes. Finally, we present the relevant NLO Chiral Perturbation Theory predictions for the relation between $K \to \pi $ and $K \to \pi \pi$ amplitudes in…

PhysicsQuarkParticle physicsChiral perturbation theory010308 nuclear & particles physicsHigh Energy Physics::LatticeHigh Energy Physics - Lattice (hep-lat)High Energy Physics::PhenomenologyFOS: Physical sciencesFermion01 natural sciencesHigh Energy Physics - PhenomenologyMatrix (mathematics)High Energy Physics - Phenomenology (hep-ph)High Energy Physics - LatticeAmplitude0103 physical sciencesGauge theoryCharm (quantum number)010303 astronomy & astrophysicsScalingProceedings of The 36th Annual International Symposium on Lattice Field Theory — PoS(LATTICE2018)
researchProduct

Measurement of the radiative K-e3 branching ratio

2005

We present a measurement of the relative branching ratio of the decay KL -> pi e nu gamma (Ke3gamma) with respect to KL-> pi e nu (gamma) (Ke3+Ke3gamma) decay. The result is based on observation of 19 000 Ke3gamma and 5.6 x 10^6 Ke3 decays. The value of the branching ratio is Br(Ke3gamma, Egamma^*>30 MeV,theta(e,gamma)^*>20^o)/Br(Ke3)= (0.964+-0.008+0.011-0.009)%. This result agrees with theoretical predictions but is at variance with a recently published result.

Nuclear and High Energy PhysicsChiral perturbation theoryPhotonHadronFOS: Physical scienceskaon decay; NEUTRAL KAON; branching ratio7. Clean energy01 natural sciencesNEUTRAL KAONHigh Energy Physics - ExperimentNuclear physicsmesoni KHigh Energy Physics - Experiment (hep-ex)0103 physical sciencesRadiative transfer[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]radiative kaon decays010306 general physicsmesoni K; decadimenti radiativiPhysics010308 nuclear & particles physicsBranching fractionK13 DECAYSBremsstrahlungkaon decayAmplitudedecadimenti radiativibranching ratioAtomic physicsParticle Physics - Experiment
researchProduct

ChPT parameters from tau-decay data

2015

Using the updated ALEPH V-A spectral function from tau decays, we determine the lowest spectral moments of the left-right correlator and extract dynamical information on order parameters of the QCD chiral symmetry breaking. Uncertainties associated with violations of quark-hadron duality are estimated from the data, imposing all known short-distance constraints on a resonance-based parametrization. Employing proper pinched weight functions, we obtain an accurate determination of the effective chiral couplings L10 and C87 and the dimension-six and -eight contributions in the Operator Product Expansion.

Chiral anomalyPhysicsQuantum chromodynamicsNuclear and High Energy PhysicsParticle physicsChiral perturbation theory010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyFOS: Physical sciencesDuality (optimization)01 natural sciencesHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Nambu–Jona-Lasinio model0103 physical sciencesHigh Energy Physics::ExperimentOperator product expansion010306 general physicsChiral symmetry breakingParametrization
researchProduct

Photon-pion charge asymmetry in e+e− reactions: A laboratory for perturbative QCD phases

1987

Abstract The charge asymmetry in the production of a photon and a meson in e + e - annihilation is studied in perturbative QCD. This quantity measures the interference of amplitudes governed by different momentum scales. It is thus a powerful tool to probe strong interaction phases at high energy and in the context of Sudakov exponentiation and the chromo Coulomb phase. We find a null result at the lowest non-trivial order off α s in the entire kinematic region described by perturbative QCD.

PhysicsNuclear and High Energy PhysicsParticle physicsAnnihilationChiral perturbation theoryMesonHigh Energy Physics::Latticemedia_common.quotation_subjectHigh Energy Physics::PhenomenologyStrong interactionPerturbative QCDAsymmetryPionQuantum electrodynamicsCoulombHigh Energy Physics::Experimentmedia_commonPhysics Letters B
researchProduct